Acid-Catalyzed Autoxidation of 12-Hydroxyeudesman-3,6-dione to 6,12-Epoxyeudesma-4,6-dien-3-one

Hajime NAGANO, * Hiroko SUGIHARA, Hiroko ITO, and Michio SHIOTA

Department of Chemistry, Faculty of Science, Ochanomizu University,

Otsuka, Bunkyo-ku, Tokyo 112

Treatment of a benzene solution of 12-hydroxyeudesman-3,6-dione with p-toluenesulfonic acid in air gave 6,12-epoxyeudesma-4,6-dien-3-one ($\underline{2}$) in 57% yield. Dienone $\underline{2}$ was further oxidized to give 7-hydroxyeudesmanes.

Autoxidation of electron rich dienes, such as the oxygenation of enamines of α , β -unsaturated ketones to γ -keto products, α has been well investigated. Base-catalyzed autoxidation of cyclic 1,4-diketones to enediones (e.g.,cholestane-3,6-dione to 4-cholestene-3,6-dione) proceeds via intermediately formed dienolate ions. However, acid-catalyzed autoxidation of 1,4-diketones to enediones proceeding via dienols or their equivalents has not been reported. We now describe the acid-catalyzed autoxidation of 12-hydroxyeudesman-3,6-dione (1), a cyclic 1,4-diketone, assisted by the neighboring hydroxyl group α 0 to give 6,12-epoxyeudesman-4,6-dien-3-one (2).

Compound $\underline{1}^{4}$) was prepared in 6 steps (65% overall yield) from the known keto lactone $\underline{3}^{5}$) [reagents: (i) ethylene glycol, p-toluenesulfonic acid(TsOH), (ii) LiAlH₄, (iii) acetic anhydride, pyridine (mono acetylation), (iv) H₃O⁺, (v) Jones oxidation, and (vi) OH⁻]. Treatment of a benzene solution of compound $\underline{1}$ with an excess of TsOH at room temperature in air for 15 h gave $\underline{2}$ in 57% yield. The UV [$\lambda_{\text{max}}^{\text{MeOH}}$ 336 nm (ϵ 12000), 252 (ϵ 5300) and 210 nm (ϵ 3500)], IR [ν_{max} . 1665, 1633, and 1583 cm⁻¹], and $\frac{13}{2}$ C NMR [δ (CDCl₃) 199.76(C-3), 149.52 (C-5), 146.93 (C-6), 128.36(C-4), and 125.41(C-7)] spectra⁶) indicated the presence of a conjugated dienone moiety in $\underline{2}$. The two-dimensional $\frac{1}{1}$ H shift-correlation spectrum (COSY)

Chemistry Letters, 1987

further showed the presence of partial structures, $-O-CH_2CH(CH_3)$ and $-CH_2CH_2C(CH_3)CH_2CH_2$, in $\underline{2}$.

When $\underline{1}$ was treated with TsOH in benzene under nitrogen, an inseparable mixture of enol ethers, $\underline{4}$ and $\underline{5}$ ($\underline{4}$: $\underline{5}$ = 1 : 2), 7) was afforded. The mixture was further transformed to $\underline{2}$ in the presence of TsOH in air. The dehydrogenation reaction, however, did not proceed without TsOH; this indicates that the reaction proceeds via the acid catalyzed enolization of C-3 carbonyl group of $\underline{4}$ and/or $\underline{5}$. The intermediately formed electron rich diene(s) $\underline{6}$ may be oxygenated with molecular oxygen. 1,2)

Dienone $\underline{2}$ was further oxygenated to give 7-hydroxy derivatives, $\underline{7}$ (30%) and $\underline{8}$ (15%), $\underline{8}$) upon standing in air. These hydroxy ketones may be yielded via the epoxidation of the γ , δ -double bond with molecular oxygen. $\underline{9}$) Treatment of dienone $\underline{2}$ with m-chloroperbenzoic acid (MCPBA) in aqueous tetrahydrofuran gave stereoselectively $\underline{7}$ in 54% yield along with lactone $\underline{9}$ (10%). $\underline{10}$) Oxidation of $\underline{2}$ with MCPBA in methanol gave $\underline{10}^{11}$) in 51% yield. $\underline{12}$) The down-field shift of $\underline{8}\alpha$ -H signal [δ 1.10 to 3.04 (ddd, J=14.0, 4.3, and 2.5 Hz); assigned based on the COSY spectra measured in \underline{C}_6D_6] by addition of trichloroacetyl isocyanate and the nuclear Overhauser enhancement of OMe signal on irradiation of $\underline{10}\beta$ -Me revealed the stereochemistry of $\underline{10}$ and consequently the stereochemistry of $\underline{7}$ and $\underline{8}$.

Autoxidation of 8-hydroxyoctane-2,5-dione, ¹³⁾ an acyclic 1,4-diketone, in the similar conditions did not proceed. Base-catalyzed autoxidation of acyclic 1,4-diketone to enedione has not been reported. Under acidic conditions as well only cyclic 1,4-diketones may be autoxidized to enediones.

Examination of the generality of the acid-catalyzed autoxidation and further transformation of $\underline{7}$, $\underline{8}$, and $\underline{10}$ to 7- and 8-hydroxyeudesmanolides are under way. References

- 1) S. K. Malhotra, J. J. Hostynek, and A. F. Lundin, J. Am. Chem. Soc., <u>90</u>, 6565 (1968).
- 2) W. G. Dauben, G. A. Boswell, and W. Templeton, J. Org. Chem., <u>25</u>, 1853 (1960).
- H. Nagano, T. Iwadare, and M. Shiota, J. Chem. Soc., Chem. Commun., <u>1985</u>,
 656; J. Chem. Soc., Perkin Trans. 1, <u>1986</u>, 2291.
- 4) <u>1</u>: mp 95.0 96.0 °C; IR(KBr) 3420 and 1705 cm⁻¹; ¹H NMR(CDCl₃) δ 0.94(d, J= 6.8 Hz), 0.99(s, 10-Me), 0.99(d, J=6.4 Hz), 3.44(dd, J=10.7 and 6.7 Hz, 12-H),

and 3.55(dd, J=10.7 and 4.9 Hz, 12-H). Found: m/z 252.1741. Calcd for $C_{15}H_{24}O_3$: M, 252.1725.

- 5) K. Yamakawa, J. Org. Chem., <u>24</u>, 897 (1959).
- 6) Purified by HPLC [RP-18 column; MeOH-H₂O (3:2)]. $\underline{2}$: an oil; $[\alpha]_D^{18}$ + 549° (c 0.72, CHCl₃); ¹H NMR(CDCl₃) δ 1.13(s, 10-Me), 1.15(d, J=6.8, 11-Me), 2.06 (s, 4-Me), 3.85(t, J=8.7 Hz, 12-H), and 4.49(dd, J=9.8 and 8.7 Hz, 12-H). Found: m/z 232.1477. Calcd for C₁₅H₂₀O₂, M, 232.1463.
- 7) Mixture of $\underline{4}$ and $\underline{5}$: an oil; IR(neat) 1715 cm⁻¹; 1 H NMR(CDCl $_{3}$)[$\underline{4}$: δ 0.68 (d, J=6.3 Hz, 11-Me), 1.00(s, 10-Me), 1.55(d, J=7.3 Hz, 4-Me), 3.22(dd, J=10.4 and 8.2 Hz, 12-H), 3.73(q, J 7.3 Hz, 4-H), and 3.92(dd, J=8.2 and 7.7 Hz, 12-H). $\underline{5}$: δ 0.75 (s, 10-Me), 0.90(d, J=6.7 Hz, 11-Me), 1.50(d, J=6.6 Hz, 4-Me), 3.59 (t, J=8.5 Hz, 12-H), and 4.24(dd, J=9.3 and 8.5 Hz, 12-H)]. Found: m/z 234.1637. Calcd for $C_{15}H_{22}O_{2}$: M, 234.1620.
- 8) $\frac{7}{2}$ (less polar diastereomer): an oil, IR(neat) 3480 and 1680 cm⁻¹; 1 H NMR (CDCl₃) δ 1.03(d, J=7.1 Hz, 11-Me), 1.15(s, 10-Me), 1.74(s, 4-Me), 3.72(dd, J=10.7 and 6.1 Hz, 12-H), and 4.11(dd, J=10.7 and 3.7 Hz, 12-H). Found: m/z 266.1517. Calcd for $C_{15}H_{22}O_{4}$: M, 266.1518. $\frac{8}{2}$ (more polar diastereomer): an oil; IR(neat) 3400 and 1670 cm⁻¹; 1 H NMR(CDCl₃) δ 0.89(d, J=7.0 Hz, 11-Me), 1.21(s, 10-Me), 1.83(s, 4-Me), 3.68(dd, J=11.0 and 3.5 Hz, 12-H), and 4.01 (dd, J=11.0 and 3.5 Hz, 12-H). Found: m/z 266.1514.
- 9) H. Hart and P. B. Lavrik, J. Org. Chem., <u>39</u>, 1793 (1974).
- 10) Treatment of <u>2</u> with an excess of MCPBA in dichloromethane gave <u>9</u> in 56% yield. Satisfactory spectral data (IR, ¹H NMR, ¹³C NMR, and high resolution MS) were obtained. I. J. Borowitz, G. Gonis, R. Kelsey, R. Rapp, and G. J. Williams, J. Org. Chem., <u>31</u>, 3032 (1966).
- 11) $\underline{10}$: mp 179.0 179.5 °C; UV(MeOH) 244 nm (ϵ 9100); IR(KBr) 3400, 1665, and 1600 cm⁻¹; 1 H NMR(C₆D₆) δ 0.79(d, J=7.0 Hz, 11-Me), 1.09(s, 10-Me), 2.40 (s, 4-Me), 2.79(s, OMe), 3.13(t, J=8.3 Hz, 12-H), and 3.64(t, J=8.7 Hz, 12-H); Found: m/z 280.1655. Calcd for C₁₆H₂₄O₄: M, 280.1674.
- 12) A. A. Frimer, Synthesis, <u>1977</u>, 578.
- 13) Prepared from γ-valerolactone as follows. (i) diisobutylaluminium hydride,

 (ii) CH₂=CHCH₂CH₂MgBr, (iii) Jones oxidation, (iv) ethylene glycol, TsOH, (v)

 O₃ then NaBH₄, and (vi) H₃O⁺. I. F. Bel'skii and Z. K. Vol'nova, Izv.

 Akad. Nauk SSSR, Ser. Khim., 1967, 1383; Chem. Abstr., 68, 21757w (1968).

 (Received May 21, 1987)